skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coan, T E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to 2.41 × 10 20 protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process K π + S ( μ μ ) , for a LLP S . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Double- and single-differential cross sections for inclusive charged-current ν μ -nucleus scattering are reported for the kinematic domain 0 to 2 GeV / c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean ν μ energy of 1.86 GeV. The measurements are based on an estimated 995,760 ν μ charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for ν μ -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by χ 2 comparisons of the predicted-versus-measured ν μ CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos ( 3 + 1 model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, 13.6 × 10 20 protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use ν μ charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a Δ m 41 2 range extending 2 (3) orders of magnitude above (below) 1 eV 2 . NOvA finds no evidence for active-to-sterile neutrino oscillations under the 3 + 1 model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous ν τ appearance for Δ m 41 2 3 eV 2 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. This Letter reports a search for charge-parity ( C P ) symmetry violating nonstandard interactions (NSI) of neutrinos with matter using the NOvA Experiment, and examines their effects on the determination of the standard oscillation parameters. Data from ν μ ( ν ¯ μ ) ν μ ( ν ¯ μ ) and ν μ ( ν ¯ μ ) ν e ( ν ¯ e ) oscillation channels are used to measure the effect of the NSI parameters ϵ e μ and ϵ e τ . With 90% CL the magnitudes of the NSI couplings are constrained to be | ϵ e μ | 0.3 and | ϵ e τ | 0.4 . A degeneracy at | ϵ e τ | 1.8 is reported, and we observe that the presence of NSI limits sensitivity to the standard C P phase δ C P . Published by the American Physical Society2024 
    more » « less
  5. NOvA is a long-baseline neutrino oscillation experiment that measures oscillations in charged-current ν μ ν μ (disappearance) and ν μ ν e (appearance) channels, and their antineutrino counterparts, using neutrinos of energies around 2 GeV over a distance of 810 km. In this work we reanalyze the dataset first examined in our previous paper [] using an alternative statistical approach based on Bayesian Markov chain Monte Carlo. We measure oscillation parameters consistent with the previous results. We also extend our inferences to include the first NOvA measurements of the reactor mixing angle θ 13 , where we find 0.071 sin 2 2 θ 13 0.107 , and the Jarlskog invariant, where we observe no significant preference for the C P -conserving value J = 0 over values favoring C P violation. We use these results to examine the effects of constraints from short-baseline measurements of θ 13 using antineutrinos from nuclear reactors when making NOvA measurements of θ 23 . Our long-baseline measurement of θ 13 is shown to be consistent with the reactor measurements, supporting the general applicability and robustness of the Pontecorvo-Maki-Nakagawa-Sakata framework for neutrino oscillations. Published by the American Physical Society2024 
    more » « less
  6. The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on Ar 40 and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026